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TECENICAL MEMCRANDUM NO, 1138 ..

O THE APPLICATION CF THE ENERGY METHOD TO STABILITY PRCBLEMS?!

" By Karl Marguerre -

.- Since stability problems have come into the field of vision of engi—
neers, 'energy methods have proved to be one of the most powerful alds in -
magtering them. For finding the especially interesting critical loads
special procedures have.evolved that depert somewhat from those customary
in the ususl elasticity theory. A clarification of the connections seemed
desirable, especially with regard to the posteritical region, for the ’
treatment of which these special methods are not suited as they are.

The present investigation® discusses this question - complex (made
importent by shell conetruction in aircraft) especially in the classical
example of the Fuler strut, because in this case — since the basic fea-
tures are not hidden by difficulties of a mathematical nature — the prob—
lem is especlally clear. ' '

The present treatment differs from that appearing in the Z.f.a.M.M.
(1938) under the title "Uber die Behandiung von Stabilittiteproblemen mit
Hilfe der energetischen Methode" in that, in order to work out the basic
ldeas™ still more clearly, it dispenses with the investigation of behavior
at "large" deflections and of the elastic foundation; in its place the
precent version gilves an elaboration of the 6th section and (in its Tth
and 8th secs.) a new example that chows the applicebility of the general
criterion to a stability problem that differs from that of Euler in
many respects. '

T ] : ”
. "Uber die Anwendung der energetischen Methode auf Stabilitats—
probleme." Jahrb., 1938 DVL, pp. 2502-262. . : S

o . . :

. In the paper investigations were continued at the instigation of -
Professor Trefftz (during his activity at the Deutschen Versuchsanstalt
fur Luftfahrt). For a large part of the work (especially in secs. L and

€) the author is very grateful to his colleague, R. Kappus, for his close
collaboration. i : :

a . , .
-See the next to last paragraph of the Introduction,
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SUMMARY

Tn the two exemples of the Euler strut and the slightly curved beam
under transverse load it was shown that the difference between the sta-
bility problems and the problems of linearized elasticlity theory rests
upon the fact that in the stability problems the expression for the energy
of deformetion contains terms of higher than the second order in the dis~-
placements. This idea mekes it possible to establish the comnection be—
tween the energy method in the speciel form most used for stability in—
vestigations and the principle of virtual displacements in 1ts general
elasticity — theoretical version;.besides, 1t permite the investigation
of elsstic behavior beyond the critical deflectlon. . :

INTRODUCTION

Kirchoff's uniquenees law states: An elastic body can assume one
and only one. equilibriuwm configuration under a gilven (sufficiently small)
external loading., In the formulation from the energy peint of view: the
potential II of the inner and outer forces has one and only one extremal

8TT = O T

and the extremal is a minimum,?t

The uniqueness law holds without restrictions in the realm of line—
erized theory of elasticity, that is, as long as the stresses o, T can
be expressed linearly in terms of the strains 7, eand the strains line—

arly in terms of the displacements w, v, w. Then the function II is of,
at most, the second degree in the displacements, and geometrical considera-—
‘ tions show directly that a "parsbola" of the second degree (positive def-
inite quedretic form) can have ome ‘and only one minimum (or in mechenical
terms, equilibrium position). The situation changes, however, when struc—
tures are considered the behavior of which can no longer be expressed with

lmor the derivation of the principle of virtwal displacements (eque—
tion (1.1)) for elastic egquilibrium, see, for example, reference 1, pp.
70 £f. A careful foundation of the general theory of the behavior at the
gtability limit eppears in reference 2, p. 160. (For further literature,
see reference 1, pp. 277 ff., or reference 2). The investigations in
section Stable and Unstaeble Equilibrium in particular make use of  the
Trefftz point of view.
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* sufficient accuracy by the linearized strain-displacement equations.. Such
are, particulery, bodies for which one dimension is small compared to the
others, structures in the form of shells, plates, or bars. For example,

a rod can, without exceeding the proportional 1limit, undergo bending de—
flections several times greater than its.thickness, and under these cir—-
cumstances the quadratic part of the (transverse) displacements in ‘the

" strain displacement equations is no longer small campered to.the linear
pert. Then the eneygy of deformation of the potential II' becomes ‘of
higher then the second degree in the displacements, and-a 'parasbola of -
higher order can naturally have several. extremala (eqnilibrium.pOsitions)

The proolem of the theory of stability is usuallj consldered to be

the determination of - that external load under which several neighboring
equilibrium configurations are possible. The reason for limiting in~—
vestigation to this "ecritical point" lies in the fact that the differential
equations describing the elastic behavior in the vostcritical region are,
in genmral no lonreyr linesr and an anslytlcel treatment would therefore
he difficult; while at the critical point itself the problem can still be

"linearized" . o

This purely practical viewpoint nas, however, led to a certain (as
is shown, from unfounded standpoint) systematic separsbtion of the sta—
bility problem from the other prcblems of the theory of elasticity, which
Tinds 1tes mathematical expression in a formulation of the principle of
virtual displacements somewhat different from the ususl one -~ hesg also
for conveniende led to the formulatlon cf & special principle. (For ex—
ample, see reference 3.) ' i IR :

The principle of virtual displacements states that dur¢ng a virtval
(that ig, geometrically possible) displacement from an equilibrium posi—
tion, -the energy of delormation taken up by the elastic body is equal to
the work dcne by the external forces., For the use of this principle in
the theory .of elasticity 1t is convenient to express this fact in the
following way: An equilibrium state is distinguished by the fact that
for every virtual displacement from that state the potential of the inner
and outer forces '

II=A1+.V-

Khovledge of the postcritlcal region was until now of secondary
practical interest, because buckled structursl elements were considered
unpermissible. It has been only in recent years that in the shell con—
struction of aircraft critical loads have been permitied to be exceeded
by large amounts unhesitatingly.
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has,a‘statioﬁaxy’Valuei
SIT = 8(Ay V) =0 - = ° ()

Therein the potentia1 Ay . of the inmer forces is éivén by the energy

of deformetion (inner work), and the potential V of the external forces
by the negative product-of the external forces considered constant and T
the displacements of their points of application. In the region of appli-
cability of the'proportionality law numerically V = ~28g5, where Ag

is the work done by the external foices as they increase .from zero to
their finsl values in paseing through only equillbrium states. The prin-
¢iple (1.2) can therefore be written convenientlJ also 1n the form. P .
exemple, see reference 3 )

.S(Ai-EAa)=O . : v (1.3)

As againet this there 1s often used as & "minimal princip*e" in stability
theory the condition

| (a4 %Aa) =0 ‘ (1.4)

The author intends to show in the present paper (in the classical
example of the strut) that also stebility investigations are best handled
in connection with the single main equation (1.2), wherein terms must be
retained of higher order in the deformations Jogical_y only in the ex—
pression for the energy of deformation. This procedure is essential
from the practical standpoint, if the relatlonships are tc be invsatigated,
in the poetoritical -reglorn, and desirable from the systematic standpoint,
becauce it becomes clemr in this menner that no'sdditional principles are
required. In particular, this consideration will cleear up the apparent
contradiction between equations (1.3) and (1.h4).

The calculation itself is carriled out in the following manner:
First, the expression for the energy of deformation A; 1is set up, then

the differential equations for the two components of d*sp;acement are
derived from the condition :

3IT = 0
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. and the guestion of the stability of the: equilibrium position is answered
by the restricted condition

TR TSR

*n=m1nimum a (1.5)

, Then the same problem is treated with the help of a Ritz procedure; in

" . thie way the result of the stability consideration ls brought out in an

> especially elegent mannar. After a thorough discussion of the usual sta—
bllity theory, 1t is shown in conclusion how the same considerations can
gserve for the treatment of the snap-action problem of & slightly curved
beam.

ENERGY OF DEFORMATION

If the customery assumptions of the beam theory are retained — that
for emell deflections of the beam the work of stretching and work of
bending are independent of each other and that the part of the work re—
sulting from the shear forces is small compared with the other two parts -
then the energy of deformation can easily be given. . N

As a result of the assumption of small displacements — without at first
saying anything about the sizes of the displacements u and w (fig. 1)

I relative to each other — the strains u, and wy(or w,2) mey be neglected

in comparison with unity; that 1s, in a development of both quantities in
powers of uy and wy only the lowest power need be retalned. If, there—
fore, the square of a line element of the beam centerline before deforma—
tion is , ' :

a2

and after deformation

[( 1+ ux>2’+ %x‘e;l dxz | (2..‘1)

(the subscripts on u and w indicate derivatives with respect to x),
then the strain of the beam centsrline (reference 1, p. 57) ig :

- 2 vx?
€x=J<l+ux>2*Wx -—lzux+-——2—-u (2-2)
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From Hooke's law the corresponding stress is

=E<UX+Y22L2—>

(2.3)

and therefore the energy of stretching is
. . a2\ 2 o L
— EF W : .
A= — JF Uy +-.-J—c-—> ax . , T {2.h)

The Incremental strain gx due to bending is, according to the
assummtion that normals are.preserved

€x = —-zwxx . ‘ . ‘ (2-5)

the bending e‘ne"i'gy is therefore given by : e ' ] '
2 . Z : * . ' .
E ]  EX [ -
=3 //JT (zwn) ‘dx dy dz = 5 _fwxxzdx (2.6)
A _ s - .

Ir si_: u(0) — (1) = —u(1) is the dietance of approach of the ends,
P = pF = ~ 0,F the compressive force, then — (pF)(€l) = V' is the po—
tential of the external forces; the total potentisl IT (measured from

the strese—free state as the zero position Just as the displacements
u, w, €!) 1is herefore

1
2 ™

A
_E_F[( cal) B[ e
IT = 3 / /d.x+2J/ Iy QX ~ pFe 1 (2.7)

(&}

The potential per unit length — after divisisn by EF ~ can be written

~

II = E =31 f(ux+-——>dx 57 fwn-?dx—%e (2.8)
o
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From equation (2.8) -and ‘the condition {1.,%) = -

II = mintmm - {=.9)

-

- there 1s obtained all information about the behavior of the étrut at end
beyond the stability limit, . L R

THE DIFFERENTTAL EQUATIONS FOR THE DISPLACEMENTS u,. w

Consider a rod the left end of which is (x. = 0) i1s supported and-
the right-end gives . . (x = 1) is freely mévable in a horizéntal direc— .
tion under a centraliy-placed -compreseive force P. (See fig. 1.)- As
given (that is, as the independent variable of the problem) ' teke either . .-

the horizontael displacement | or the compressive
of the right-hand end gtress

(1) | | :

wll) = —- ¢l = -
T CPTF

.

According to the principle of virtual displacements, the displacements
are to be varied under a constant load in a manner compatible with the geo—
metrical conditions. If at a boundary point ‘the displacement (in the pres—-
ent problem, for example, €) is prescribed, the point is held fixed
during the veriation, 80 that the work of the (unknown!) external forces
doee not remain in the calculation; if on the other hand, the force is
given, then the (not fixed geometrically) end point is varied, and the
work of the external load (in the present problem PSu) senters into the
calculation. ‘ '

If in equation (2.8) the displacement u is varied (that is, if the
elements of the rod are given a. viriual displacement in the axial direc—
tion, while the boundary point or coryrespondingly the load 1s held fixed)
there follows from the rules of the calculus of variations

: 9 sz
& \Wx* 3 )=0
together with the boundary conditions {3.1)
- S ) ]
u(l) = —¢l ‘.ux+2+E]x=z.—O
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s"imtﬂ.‘raneoue equa.tions offers no. aifficulty here.
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by varying w there is obtatlned: (1nde§endently of whether ¢ .or P is
considered as given): .

with the boundary conditions o | (3.2)

“w(0) = w(1) ="dk#(o) - ng(z) = 0
The exact 1ntegration of the syatem (3 J.) (3 2) of nonlinear (')

From (3 l) there follows .-

g
X
uyx + "—'2—- = conatant = ~— €4
(3.3)
u—u(e)~eox [ -—--dx
. ... and with the use‘ofv(3_.3), (3.2) becomes
Ve ¥ Tz Vxx T O (3.4)

The solution of this linear equation with constant coefficients is

w=f sinkx + g coskx + £3x + gy

where k is the positive root of the quadratic equatisn

¥ -2.90.
12

For ‘the determination of the six constants of 1ntegration f e, f;, 83,
u(O), €, there aré the six boundary conditions (3.1):end (3 2):
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g+ g1=0 o . kKg=0

f siﬁ 'k7.'+g cos kt';ié 'fli '+-g1 = 0

fk= sin k1 + gk® cos k1 = O

u(0) = 0
and
. 1 S
L we - r '
_ez=u(0)-eoz—f—£~d,x —€o+ == 0 © (3.5)
It is found that
f1 =81 =g=u(0) =0
and either o
f=0, that'is, w=0
60-.6 o""E
EUCI EEEERE LI (3.6)
u = X u=-ﬁx
or
T
£ #£0, w=¢f sin kx, k==
2 2 .
I S S
€o__. Y = € . o (3.7)
' 2
n f 2nx
U= - €*¥X 4 = - —
€ 873 sin 7

_ There are evidently two kinds of equilibrium positions: .the straight
(f = 0) and the bent (f # O). The straight position is specified uniquely

by either- p or €, the bent by € — for the amplitude f of the deflec—
tlon can be ae__termined.uniqugly_from the left one of equations (3.5) .

L S =€, €% : (3.8) .
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not, however, by p. From the right one of equations(3.5) there follows
rather that for f # O a completely determined "critical" value

P =Ee* = (3.9)

cannot be exceeded., Therefore p ie unsuited for an indépendent
parameter (the situation is different in the case of the corresponding
plate problem) (reference 4, p. 124). From equation (3.8) 1t can be seen
that f assumes real values only for ¢ > e¥, :

In figures 2 and 3 the quantities f and p are plotted sgainst .
The solid lines are for the solution {3.7), the dotted lines for equation

(3.6). |

The result (3.9) — that the load for the buckled strut does not in—
crease beyond p* even when the critical end shortening has been con—
siderably exceeded — 1s a result of the limitation to "small" deflectionms.
For the present problem this limitation is not importent because here it
was only a question of seeing that as a result of the appearance of higher
powers of w in equetion (2.8) the elastic rod can assume several equi-
librium positions - especially that the existence of a real multiplicity
is bound up with the exceeding of a certain "ecritical" strain e = c¥,

1

STABLE AND UNSTABLE EQUILIBRTIUM

In the "ordinary" theory of elasticity it is necessary to consider .
only the condition

5II = 0, that is, II = extremum (+.0)

1Reference 5, pp., 70 ff. Also the theory of the so-called exact
differential equation of strut buckling

EJfo+Pw =20

(reference 1 ; D. 280) shows that at large deflections (because of the in—
creased demand on bending energy) there is a very small incresse in load.
From the energy standpoint, to be sure, this "exact" equation 1s not im—
portant, for if w,? 1s taken as not small compared to 1 in the bend—

ing term (that is, the curvature 1/p is used in place of wxx) it 18

necessary to swroceed in & corresponding manner with the stretching term
(equation(2.2)) — unless it is assumed that an inccmpressible strut exists
from the start, as is done in the theory of the Euler elastica.
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in-the determination of equilibrium states, for the supplementary con—
dition 83%IT > O (mechenicallys: the stability of the equilibrium posi~
ticn) 1s assured there because of the linearization (refererce 1, pp. Tl-
72); in the present problem the minimal cordition must be set up explicitly,
eince only through

BIT = 0, B2II > 0, that is, IT = minimum (5.1)

can the stable equilibrium positions be distinguished from other possi—
ble (the unstable) positions. The concept of stability is made preciseé
here by the following convention,?

1. An equilibrium state is called stable if for every neighboring
state the potential energy has a larger valus. ,

2. An equilibrium state is called labile (unstable) 1f there is at
least one neighboring state for which the potential energy is smaller.

, 3. A stability limit (that is, a neutral equilibrium state) 1s
spoken of when there is at least one neighboring equilibrium stats the
potentlal energy of which is equal bo but none having potential energy
less than that of the given equilibrium state.

; Return to equations (2.8) or (2.9):"

1 1
A a2\ 12 N '
I'Iz_..]:../\(ux.,.y—&—) dx+-——/x,§cx2dx-£€=.'-minﬁ.m1un
21/ 2 / 21 4 E

and perform e, variation; that is, replace w by u+ du and w by
w + Sw; there results, after arranging in powers of Bu, dw and
stopping after termes of the second order,

tans

1The following definition was given, in substence by E, Trefftz in-~
cldemtally  to his DVL lecture.
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A A A A 1 2~ v
“in e OTE = IT(u# Bu, w4 Bw) ~ T (u;w) = BIT +-2-5 T+ 0. 0

o | ey * 7[(“:: L
. 2 B
+_£ Jﬁ Biux + EQLC)ka By + 1w, 5wix_J¢X

1 Yo 2 T
: C ! :
.4 l f . '\__‘2 l ) ) .

. 1 2 - . .
1 L s N - N\
+ —é-i- 'L<ux + --325-.--.;- wj’f /}(wa\ + _12<6wn> ]dx
. ) o

Tela.
R 3

N PR
RS
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2

N -

1

The condition that the terms of first order shell vanish leads to equa—
tions /(3.1) and (3.2); the question of stability is answered by the terms
of gecond order. By inserting for u, w the values obtained from.

8II = O there results for (3.6) .(straight position) -

1 ' 1
) /oa r o/ e N2 A
2.5 _ 2N\ -}*4/’\_ ( 2( ) “ lf<~>
<a 11/1=(\5 Aijl— 1'0 L*GI wa) + 1 .wax *dx_-i- ; 0 Buy  dx (k.2,)

for (3.7) (vent position)

e’

s > -r\z‘“ 4 2

52;'1?_1":\‘ —( 82’\ Vo 1:- ¥ f( —ex n fz 082 ,_’t_%\“'; (5 \;2+ 12<5 “‘;.2 “idx
V2 TN 1), = z\! AN N AN % o/
; 1 2
onf [ nx 1 )
+ ,5”./ cos — Bwy du, dx + — Eux// dx (4.25)
1 fe) 1 1 o

First the stability limit will be determined. According to the defi-
nition given above there must be at the stability limit a state for which
the second variation vanishes but none for which it becomses negative:

The value zero is therefore the smallest value that OS2II can assume at
the limiting point. If, therefors, 3%IT has certain continuity prop—
érties (the existence of which is obvious on mechanical grounds), then
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the "characteristic" value &7 II = 0 . is-at the same time an analytical
minimum, compared with heighboring values, eand the associated- ("charac—

teristic") displacement system Bu, 5w is determined from the condition

.5<62f1>%7¢"' S ()

The straight position (see equation (4.2;)) thue reaches the eta~
bility limit when ©Ou, 8w eatisfy the two differential equations

(Buly, = 0
= (4.4)
(BW), 4 — (%) = 0
Too e PV 7
with the end conditions
8w(0) = 8w(1) = Bwy, (0) = Buyy (1) = 5u(0) = 0
and o : © (k.5)
‘ ' Bu(i) = o duy(l) =0
The solution of this eigenvalué pfoblem reeds In both cases
Su = 0, 3w = &f ein 5% e (h.6) .

The amplitude 5f # 0 remains undetermined and from the second of equa—
tions (4,4) there is obtained for the critical value of

n2i2
12

€ s
_.erit =

that is exactly the expression Copit = €F by which the. branch point of

‘the equilibrium was characterized; etability limit and Branch point coin-

Cide - :

- The 1n€eétigation.proves to be somewhat more difficult for the bent
position. The two minimal conditions read
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d/Ar  af tax N
N\ T 0T M :
' (%7
.+ 9 2g, c%* ﬂaf 2_1‘\'2(_\)5 nf X g = 0
—; 1 Vyxx * - -2 cos .y Wy ™ cos ; Yy =

for the boundary condition there 1s retained

8w(0) = Bw(1) = Bwyy (0) = kai(i) = 8u(0) = 0

and, depending on whether or not the right-hand boundary point is pre—~
scribed or not, _

f - \,
su(il) = 0 <5ux + E{ cos %¥ wa)x“1‘= 0 (h.7Y)

It is" recognized immediately that for f = O, hence at the beginning of
buckling, the bar is in neutral equilibrium, for sll conditlions are satis—
fied by the solution (4.6). This result is trivial. It is not so dirvectly
obvious, however, that also for f # O there is & variation that makes

83TT a minimum; the homogeneous gystem of equations with homogeneous

boundary conditions permits of a non-vanishing solution also for £ # 0.

In fact if the varilation is so performed that the second boundary con—

%itign'of (k.7') is satisfied there follows frcm the first of equations
T

R 5 1% - L
du, = = cos By, (4.8)
If this is put in the second of equationsl(h.T) the latter reduces to

4%+ o 2 (o v )
v + g 17 (B + S = 0

and this equation (together with its boundary conditions) is satisfisd by

Sw'= 8F gin 3?;' For 5u there is obtained from (4.8)
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— -1 gifferent depending “upon whether the Iond or the displacement is

. . Mhis result. is natirally connected with ¥he sssumption ‘that, the .
' strut-adheres strictly to the law of deformation established by the. ex—
Presston (2.7), 7o T men T oL
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e _ n2f5f< ) 00

e . . L e - . =_'__'______ . +-___ :_s n-,.,..*.__,....' S . I

I e T 5“ 212,,."‘_ pr.. X1 /.

in which Bf again represents the (not determinsdle by a system of homoge—
neous equations) erbitrery factor. .

The guestion of the stability of the equilibrium positions below.-"-é,'nd.
above the limit can now be answered. - ‘

I Since ‘the straight ‘position (see equation (4:27)) 18 steble ‘for
very small ¢, from considerations of continulty it is so for ‘€ < e¥*,

2. For € > ¢* the stra,igh'l-; position represents an wnsteble equi—

librium state, for a varlation 5w, namely,

Bw = &f sin %JE

can be given for which 82IT <O,

3. For € > e* the bent rod is ageinst the variation

8w = SF sin -’%
du noLes ( X+ L gin frx
- 212 \ 2n 1

in neutral equilibrium.l -Since the variation (%.9) (and only this) makes
5711 a minimum (of value zero) every other variation gives it a positive
value. If in some way the special variation (4.9) is prevented,” then: the
bent equilibrivm position is stable,” This holds especially in the impor—
tant case’ where not. the force but the displacemént of the end point is.
prescribed; for the displacement system (4.9)is in fact excluded by the
boundary. condition 5u(l) = 0. .

At.this point a result discussed later in section Comnection between
the Ordinary Investigation of Stability and the Procedure Presented Herse,
ghould be emphasized. The behavior of the rod beyond the stability limit

-
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" considered as the prescribed quantity. ‘Mbre’noteworthily, however, the
behavior at the stability limit is not affected by this difference., For,
although there are the two different boundary conditions (%.5) '

8u(1) = 0
and T .
dux(l) = 0

they both (together with the differential equation Buy, = 0) lead to
the same résult '

511 = O"-

That is, it wekes no difference whether a motion of the end points in the x-—
direction is "permitted" or not: during the buckling they do not move.

Thus the result is srrived at that the two mechanically entirely different
problems: buckling under constant load and buckling under constant end
shortening, lead to exactly the same critical state Ou, Ow, € .14, Popit,

INTERPRETATION OF THE RESULTS WITH AID COF THE RITZ METHOD

The results of sections The Differential Equations for the Displace—
ments w, v and Stable and Unstable Equilibrium can be illustrated very
elegantly if the variation problem is turned into an ordinary minimum
problem by the use of the Ritz method. In the case of the Ritz method
to be sure nothing certain can be said about the question of stability,
since from the start only quite definite displacements are cornsidered arnd
therefore nothing general can be concluded about the sign of the second varis—
tion; nevertheless, with a Judiciously chosen deflection system the
question can be answered with great probability or the answer made very
plausible. In the present, especially simple case-the earlier resultis
are found egein exactly. T :

As a set of displacements.satisfying all boundary conditions are
chosen, the solutions of the differential equations (3.2) and (3.1)

lTh_is is a pecullarity of the problem., In general, the critical load
depends upon the boundary conditions — whether are prescribed forces or
displacements, the system is supported, or guided, or built in, etc.; for
the "minimum" ~ variation, frem which the critical lead follows, differs
according to the boundary copnditions prescribed by the date of the problem.
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oo C e W ”f,sinwz,wuz.+.¢2 "*“e“g““uzz“ (?")
Then the minimal condition
1 J S 12
A wx ' 2 P
s = X + ax - £
= 21~/ﬁ <}“: 3 o 51 J "xx E €
o 0
(5.2)
4 4 2 2 2
nf i f € p !
= - - (g — €¥*) + — = €= minimm
BEEI 'y 2 E
furnishes an equation for the "free value" f as a function of €
- 2 202
oIT = fﬂ..(%* —e+ X VY _ o (5.3)
412

Lof - 218

The relatlonschip between load and end displacement is obtained by means
of the stress-strain equation (2.3) from the second of equations (5.1);
it becomss

p )
fE = € ’[ﬁ-g* (5.,4-)

£f=0, p=Ee - ' - (5.5)
andv A | | -
' . L. 2f2 - ) .
14 h
f # 0, hence I;g" =€ —¢e¥*%, p=Ee¥* | (5.6)
¢

The question of gtability is answered (with:the above~mentioned
limitation) by the second variation, As hitherto, two cases are distin~
guished: : .

1. If the force is‘prescribed,: € therefore left cpen, there are
two displacements to be varied, and ths sign of the expression

-
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n . 2/‘5 . 2A 2A -
5°II = g;%17(5f)2f+ 2 gzgfi5fae + g;%l (8¢)® (5.7

must be inveetiéated. This expression is a quadratic form in ©&f, B&e
with the coefficients '

P-3 .2 22

d°TI B PN
= —{e¥* - 4+ 3 )
ors 212 2
d31T B €.
ofde 21
\EA
eIl _ 4
de®
1T |
Since e > 0, this expression is positive definite (that is,

never negative) as long as the discriminant

7

¥Fadha AN L, n2f2’3 (5.5)
© 32 %2 Sx, T=:E\® T¢ThE 2

is greater than zero. This 1ls certainly the case below the critical point
(¢ < €*); here the system is therefore stable. On the other hand, A< O
for £ =0 and ¢ > €%; that is, the straight position is unsteble above
the critical point. Finally, the bent position is neutral, because by
(5.6) the discriminant vanishes for f # O, This result agrees with that
of the previous section and is an expression of the fact that a buckled
strut in the elastic range can be bent arbitrarily farther without in-—

. creaging the load, }

2., If the end displacement € 1s prescribed,only the quantity f
need be varied and it is found that: , . :

N T 252 B
52IT = afa (5f) = 'é-{é' .G* ""€.'+ 31‘;‘{5" L (5f)2 . | (5.9)
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From this relation it follows immediately that

Cfor e>e* and . £ 4 O 83X > 0

for € > e€* and f'=0-»521'1~..<‘0

! that is, the straight position is stable for € < e*, unstgble for :
! € > €%, the bent position, as soon as it is mechanically possible (hence
. . for €>e¥), gluays stable. Figure 4 shows the energy relationships in
f " this second case (prescribed displacement € = ae* of the right-hand end’

of the rod). Plotted as ‘ﬁ‘i R

or
A 1.4 = 2
-},_é._._..g..g(a_l).,.g‘...
€*=, 9 : 2

f

-ag a function of f(or 3 ’é%) with € (or o= ;;) as a parameter,
(The potential of the external forces is not included, because it is not
affected by the minimal condition with respect to f.s It is seen that
the straight position (f = 0) is an equilibrium position under all
clrcumgstences, for all curves start with a horizontal tangent. . For

@ <1 associated with f =0 is a minimum, for o > 1 - a maximum;. the
curves for a > 1 have further to the right also a minimum, whereby the
bent position 94 0 is characterized as a (stable) equilibrium position.
This Tigure shows especially well the "type" change of the curves in the
transition from the sub—critical to the supercritical region: the coin—
¢lding of maximum and minimum for @ = 1. It i also clear here that,
although at the moment of transition the dlsplacements are emsll, the
behavior of the body at the stability limit is nevertheless determined
by the "possibility" of greater deflections, expressed mathematically N
by-the existence of the f—terms of higher crder in the expression Tor

~

Ry
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CONIECTION BETWEEN THE CRDINARY INVESTIGATION OF STABTLITY
'AND THE PROCELURE PRESENTED HERE

The ordinary stability theory is limited to an investigation of the
critical point. It was seen that the critlcal point is characterized by
two energy conditions, The condition ’

- BIL =0
for eany vafiatian’ su, &v, Bw o e , - (6.1)

- . characterizes it as an equilibrium positioniin ggneral} the condition
87IL = 0

for a cheracteristic variation Bu, Sv, Bw (6.2)

as the critical one. Or, the critical point is distinguighed by the fact

that there a variation of the state of defermation can be mede for which

the potential II remains unchenged to terms of the second order, Now

in practical buckling problems it is ususlly a question of the transition

~ from & very simple (often independent of the coordinstes) initial state

- of stress to a comparatively very complicated one. It is therefore custom-

ary to specify the initial state-of stress directly without recourse to the

- definition in terms of energy (6.1) and to proceed with the variation im—
mediately in regard to the determination of the.second state,. There then

- remains as the single importent condition the statement (6.1), which can
be expresced in the form of a method--of-procedure as follows, for examplet

Consider a.oystem of infinitesimal distortions superimposed upon the

critical state of deformation, collect the parts of the potential energy

" IT quadratic in the added displacements and set the sum equal to zero.
That such a procedure is at all possible rests upon the fact that as g
result of the "large" initlal stresses two types of guadratic term erise:
an (always positive) part that represents the work dcne by the stresses
caused by the added displacements, and a second part that comes from the
work done by the stresses already present upon the quadratic part of the

"added displacements. (See reference 2.)1

The fact that this statement-of -procedure concerning the venishing
of the guadratic members is nothing more than the extended principle of
virtual displacements ("extended" in the sense of the statement about
B%II) does not come out clearly in the applications mostly for three
reagong.,

s : ,
In equation (L4.2;), for example, the last two terms represent the
first type and the first term, tha esecond type. '
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1. Since a confusion with the very simple initial state is in general
not.to be.feared, it is possible %to dispense with the designation 3u,
ov, 8w and write more briefly u, v, w for the added dlisplacements.

This manner of writing does.not express the fact that the added displace—
ments are to be not only small in the sense of the general hypotheses of
the theory of elasticity but also infinitesimsl in the sense of the calcu-
lus of variations., . .. ... .- - : :

C e .

2. In close connection with the above, in considering the energy it
1z customary to start not with the total potentiel II bdbut directly with
the energy changes (appearing as the yesult of u, v, w) and to designate
these changes by* A, V instead of by 5HA, &V; the (extended) principle
of virtual displacements becomes in this manner of writing

._l.;i;_y_-: 0, or even Ay = A, : . (6.3)

since the potemtiel difference =— V also represents the work of the
external forces on the infinitesimal® displacements u, v, w. Equations
(6+43) can be put into words as follows: TFor the virtual displacement wu,
v, w, -through which the original equilibrium configuration goes over
into the neighboring ("buckled") configuration at the critical point the
internal energy Ay taken up by the system is equal to the work done by

the external forces A taking into account the terms linear and quadratic

in u, v, w. By this formulation the two conditioms (6.1) and (6.2) are

canbined into one; a procedure in which there is the danger of losing

sight of the difference between the (holding for any equilibrium position)

?ginc):iple (6.1) and the (characterizing the critical poeition) extension
.2). . :

3. As the proper equation for the determination of the critical

" system of virtusl displacements u, v, v there follows (see sec, Steble
and Unstable Equilibrium) from (6.2) and the added requirement ‘

o 521']: > 0 fo:t' ell O‘bﬁer. Su, bv, Bw
the condition: - - . S RS
' | B(s7rx) = 0 o (6.4

‘1o distinguish them from those used earlier, the quantities usually
written Ay, A5, V ere designated by A4j, A, V.

®The second form of the law (6.3) therefore does not represent the
special energy law Ay = Ays; by which is expressed the fact that for

conservative systems the extermal work introdnced by the transition from

the initial to the (not neighboring!) final state is stored up as elastic
energy In the body.
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If it is agreed. to consider in Ai’ Ae » V. only the (alone essential for

‘the criticel beh&vior) quadratic torms; ‘the condition (6.4) 1s written
vin the fdnn L o o .

(8 + 1) = (6.141)
3(ag - 4) = '

This form, which is only a natural consequence. of the original agree-—-
ment. to wite w, v, w instead of 0Ou, &v, 3w, makes it guite clear to
what extent the simplified memner of writing can. lead to .conceptual errors.
For the statement (6.4'); aside from the deceptive formal agreement, has
nothing to do with the principle of virtual displacemente (1.2) or (1.3):
The principle (1.2), in content the same as the energy law (see the
-Introduction), enswers the question of the equilibrium poeitious under
given loads (or edge displacements), and equation (1.3) is & epecial form
of the same principle possible only in the realm of linearized elasticity

theory besides being very -inexpedient®; equation (6.4'J, ‘on the .other hand,

in content the same as the. minimal condition (6.4%) concerning the 'behavior

of the quadratic terms at the stability limit, gives the second equilibrium
position porsible at the branch point and the' soughtmfor value of - the load

at wvhich the eguilibriam begins to be many—valued

The difficulties 1o} far discu.qsed. were difficulties iIn interpretation
arising from the symbolisim of writing. There is enother, more factual
circumstance that mekee the gquestion complex especially difficult to see
through. It was seen in section,Stable eand Unstable Equilibrium that far
the rod there were two independent equations (4,4}, with the likewise
independent boundary conditions (4.5), for the two added displacements
du, 5w (which here would have been w:r'itten u, w). From them it was
concluded that u venished identically. This result — and correspondingly
us=0, £°'0 in the case of plates — makes possible, when (a8 1is tacitly
done in the stability theory of a bar) it is presupposed as known, a treat-—
ment of +the problem& df bar and plate stabllity deviating from the general
methods of stabillity theory depicted above. Since, however, bars and plates
are the most well-kmown problems, being analytically the most tractable,
frequently ideas that were developed there are erroneously dbrought into

180, for instance, for the compressed strut below the critical poimt
twice the external work can be written in three forms: Ee2, pe, p2/E -
which is to be varied (with respect to .e})?" The second’ form 1s meant,
but as a result of writing 2A, in the place of -V that is no longer

uniquely discernible.
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‘more.general sta‘b:llity problems. It 1s thermore necessa.rv to examine

more thoroughly the various - epecia.l - interprete.tions that ‘cén be given
to the occurrences at the stabiiity limit in the case of bars and. plates.

First of all outline the method by which it 1s neceesary o proceed
according to the directions formulated at the beginning of this section. .

If 1t 1s assumed a virtual displacement - u, w at the critical point,

then, as can easily be seen! the strain of a fiber to terms of the second
order 1s given by . : . :
£l M ) .

X S
= Uy + P LWyx = €x 7 ZWyy

Therefore the terme of second order are' in the work done by the added
stress

mr'e ’ 2
L[f 5 (uy -~ zWyy,)” dx dy dz
in the work done by the already present (critical) conpressive stress p

e B ex ey

(The external force does work — Pu(l); this makes no contributicn of

‘the second order.,) After integration over y and 2z there results

1 1
=§§<f“x2<’x+12 fwxx E’f"zd"‘> Ai =0  (6.5)
and the conditions (6, 3) and (6 41) become
1 : D l
_éfuxa dx + ief wxxa dx -= f_wxz.dx: minimum = O (6.5¢%)
o : ' o

3 - e
The . term - ux',"../e.. -goes. out in the expansion of _the radical (see .

- » e < . . ’ ) R l . . R wxx ‘:
equation (2.2)), and the expansion of the curvsture - = —— —
. ' ' o < F = 'wxé'> '

would give terms of the third order.
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The expression coincides perfectly with the earlier expression (4.21);
therefore the same differential equations and boundery conditions. and es—
Mvgpéciéllyithe_rééult’=ﬁ-§“0.~are"obtained;entirelyiin@ependgnxly.Qf whether

8 motion in the x—directién of “the right~hand end point during the-buckling
is permittéd or prevented. This double result (that -u = 0, end that the
. buckling is independent of the condition u(l) = 0. or ux(l) = 0) makes

possible the two following- "customary" interpretations of the buckling
" process. . . L E TR :
The first procedure consists in considering instead of the "natural”
problem, buckling under fixed locad, the problem of buckling under fixed
end point and at the same time (what seems almost a natural consequence
of this stipulgtion) assuming from the stert the vanishing of u also in
the interior. Hence there is superimposed upon the straight position
w = 0 a purely trensverse displacement as a variation, keeping in mind
the presence of the still unkpown longitudinal compressive stress -E¢,.

" According to equation (2.2), as a consequence of the change in length

connected with the transverse displacement, the following stretching
energy is released

Y/ ' )
- — EFeq
N A = J[\(fﬁﬁbo) cxdx = ~ % u/\wka dx
Ty o o - . . o .

at the same time a bending energy
' : A
(‘\

Lé wkxa dax -

EJ
L : Ay = —.
.r>-‘ .- - i 2

must be edded. This interplay between the two types of energy (and hence
the . two equilibriﬁm,positipns) takes place when the values of A4 and ‘31

are numerically exactly equal; that is, when

EF[af 2 ' f 2 . _
A=f"". x 3 — : =
A "2,\} | Wy 9X - € J vy dx ) 0 (6.6)

“From the additional condition &A1 = 0 there follows as above the sine
equation for ,w., This procedure thus leads to the correct end result
. ..without, however, permitting a:guarantee.of really having’ found  the mini—
" 'mal-‘buekling load. For the "restraint” assumption- u = O limits the

- number of possible variations, and that it leads to the correct buckling
load for the rod (and plate) requires at least’ a supplementary verifi-
cation, ’ ' -
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More important — because in a still more speclal way a peculierity
of the rod and plate — is another manner of thinking, which is almost
- uritversally made -the-besis of derivation of the buckling-equations.. .With
reference to the naturel buckling process, the boundaries are considered as
moveble; however — end this .ds the characteristic mark of this method -
they cannot be allowed virtual displacement u (or .1, ¥ = which, as has
been observed, would subsequently become zerc) dut are given a displace—
ment that is of a higher order of emaliness (compared with w).

In the case of the beam 1t is customary to stert this procedwre with
the assumption that no sdditional stretching energy is teken up during
bending; that is, that the bent beam has the same length as the straight
one; it follows therefrom that as s result of the bending the ends must
epproach each other by an amouwnt o

1

. 1 . .

up = - E\jpwx ax : (6.7)
O

(which in fact is of the second order in w!), so that the external forces

. PoF
do the work - poFuZ = —g—- wxz dx. ©Now by fcrmulating the equality:
o]

of inner and outer work (wherein by inner work is to be understood only
the bending energy)

1 ) 1
EJ EFe
Ay =4, or — [ w,®dx - 2 /‘wiz dx = O
2 Y% 2

and assuming as above the minimel property of this expreseion; this pro—
cedure leads to equation (6.5') — naturally likewise without the u—term.?

-lIn the assumption .(6,7) there is an inconsistency: It cannot be
assumed a priori thet 2 strut that chenges its length élastically below
the buckling limit suddenly ceases to do so beyond it. (In reality it
changes its length by quentities of higher order.) It ie more logical
to consider a perfectly incompressible — rigid against extension but
elastic In bending — etrut, for which the: two hitherto independent dis— -
placements u and w are related from the beginning by the (gecmetrical )
assumption’ ) 2

_ w®
_ Ux +."'75" =0 : 6.71)
(Continued on p. 26)
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5ince the procedure of equating the stretching energy to the extermal
worl: cannot be used in the case of the plate, a special auxiliary idea
has been used there in order to preserve the conceptually go similar idea,
that the boundaries are to move. (See reference 6.)

Without connecting the displacements u, v, w with each other nu—
merically proceed, in this method, from the essumption that u, v are
of a higher order of smallness than. w; that is, consider u, v not
as vreally Iindependent virtual displacements but as connected with the
transverse displacement w by the order-of-magnitude condition

U, & wie (etc.)

According to equation (2 2) there is cbtained fer the work done by the

" eritical stresses Ogs Ty, T OB the displacementes u, v, w 10 terms of
the "second order” g

. . A . : _
’+ Ts /;/ < uy -:- Vx * Vgly /) d.x.dy (6.8;,)
. the bending energy. 15, as always, given by

~ e ’ \\:T ‘ ;
¥ | OB CRMES RS

(8 = thickness)

(Continued from p. 25)

Such & strut permites no deformation at ‘all below the cfitical load; above
it takes on only bending energy, vhich is furnished by the external work

= DOF / Wy? Gx

Since up to the critical load no elnstic deformation at all has taken place,
the two laws

: 2 F o
ﬁi V= 5(é¢ +¥) =0 and 5 (A4 + V) = 5 gs (a; + v):l:

are here in content comrletely identical.
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Both parts together must be equal to-the work A, .of the external force
in the sense of eqpation (6.3)." The external ‘wobk can now (and this is

" the égsence ‘of “Réetssner's- 1dea) ‘be “expréssed: generally- in a very -simple -

- manner, if it is femenbered thatthe &traight position is an equilibrium
position and that therefore in every virtual displacement A = Ay, On

t
E
b

e
!  teking the special displacement u* = u, v* = v, w¥ = 0 (with the bound—
ary displacements. up* = up, vp* =¥ ), A, = A;¥*; therefore

- gi “éi* = ’;[7\.[03“5‘* Oy vy +-7-<F?.+‘j;>f} dx dy‘“.(ﬁ.as)

. and now en collecting terms in (6, 8), the u— -and Vhterms cancel out;-
there resulte the well-known Bryan plate equation (reference 1, p. 293)
exactly in the form cbtained also wmder the assumption of purely trans—
verse displacements and 1mmovdble boundaries,

. The advantage of this method is that it offers the possibllity of

. Tormulating exactly. the related. presentation of a solution of the buckling
Process by a boundary displacement. Its disadvantage 1s a double one:
The emphasizing of the boundary. displacemsnts gives the Impression that
the participation of the external work is universeelly importent in s

© buckling process, which, as has been seen, is not sc. But besides thils it
ig-important for the entire consideration, Just as for that of Bryan, that
u, v are of the second order with respect to w, which must be known
somehow beforehend;® therefore the Interpretation of the external work
Oply . - @s & contribution of the second order is not transferable to

more general dbuckling rroblems.' (See reference 6.

To summarize briefly the result of this section: In considering
the critical point 1t is customary to dispense with the correct method
of writing -the virtuel displacements Bu, &v, Bw in favor of the more
convenient u, v, w3 thereby the commection between the customary
gtability criterion and the principle of virtual displacements is con~
cealed. "To be added is that the stability problém of the rod and of the
platée permits a special tréatment which rests’ upon the fact that at the
critical point the tangentlal displacements wu, v and the normal

. The very obvious conclusion, that cen Just be seen from the form
(2.2) of the strein thet uy and w,® must be of the same order, is

not tenable; for an equation of the type (2. 2) holds, for instance, also

- for the lopgitudinal fibers of a cylinder, and yet here Ry and  wy

can become comparaeble because the tangential ‘displacement v, which is
of the same order as w, 1s linearly coupled with u through the shear
and the trensverse contraction.
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displacement w eare of differenu orders of magnitude.' oince, however,
the rod or plate preblem, ag. the analytically simplest, 18- d%t the-seme
time the best lmown, the need ‘easily arises of ‘transferring mgthods of
thinking ‘successful in these problems to more complicated prdblems, which,
as was to be shown, is net possible. o

THE DURCESCELAG — PROBLEM (F THE SLIGHTLY CURVED BEAM

In section Staeble and’ Unstable Equilibrium, 1t was shown that for
the Fuler strut the inetebility point (defined by 5(BZII) = 0) coincided
with the branch point of the equilibrium, Branching problems are, however,
not the only kind of stability problem; a second class, which-is just as
~suited to the energy definition of stability a= are the orenching
problems, comprises the so-ca*led Durchschlag problems.,

In the Durchschlag problem the critical load 1ie designated as that
load under which an (infiniteeima_) displacement of the point of applica~
tion of the load is possible without an increase in the load, for which -
as in the branching prchlem — there are therefore two (1nf§nitesimally
close) equilibrium positions, Above the critical point an increasing
. displacement is in general accompanied by a decreasing load — the state

_ is unstable, the system "snaps" into® or falls into a stable configuration,
Prerequieite for such a phenomenon is a nonlinear relationship between
force and displacement even in the snable region,

The eimplest Durchschlag prdb;em is that of a slightly curved
beam under a transverse load., (See reference 7,)

If the ends of the initially curved beam are prevented from dis— .
placing (fig. 5), then connected with the deflection caused by the
transverse force @Q 1s a shortening of the axis of the arc, as the
result of which a horizontal force H 1s nmade to agt. Because the
effect of this (very large) compressive force upon the equilibrium of
forces in an element of the beam cannot be neglected, there arise
phenomena related: to the buckling process in the Euler strut, inste—
bility phenomena. ‘ . . '

Without carrylng out all the details of the calculation (presented
completely elsewhere, reference 8) the principal method of sclution for
thls st&bllity nrdblem w17l be brieflv outlined,

. 1Tn a menner similar to that in which a strut conpreesed beyond
the Euler- limit at the least disturbance snaps or falls into the bent
position, .
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By a process that follows. very closely that.carried out in section

Energy of Deformation, is cbtained, with the notation of figure 5 (w
nov teken positive downward), for the potential emergy R

1 ' -
' r 2 2 . o
A= _5 f Kuxu*' 7.'12‘..._ Wx"x) *siawna ]dx - Qf - (7.1-)

o -

’ 2 ’ : N ' :
+ EF f [ u, 3’25—“- xwx><wx = Vi Py + 1Fu By ]d,x ~ Qof

there are obtained the two equilibrium conditions expressed in terms of

the displacements:
3 ( Wxa W . > 0
— + — - W w = 0
ox x 2 X

or, integrated once,

. Wy
<ux.+ -:-— - Wx*”x)’ constent = — h - | (7.2)

and, with the use of equation (7.2)
(7.3)

: 12wmx‘ + hviyy = hwxx
" a.;sg the boundary conditiong . ,
o ' u{0) = u(l) = V(O) = w(i)'= w&i(d) = xx(l) =0
Vexx (/2 + 0) — v (/2 — 0) = /BT (7.4)
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which together with the cbntinuityi réquire'mei;tsrfor,
' u, ux: Wy Wx;: WXJ'C o

at. x = 1/2 give fhe 12 conditions that are necessary for, the evaluation
of the 2 X 6 constants of integration in the 2 regions x 2 1/2.

The physical significance of the constant h can be recognized di-—
rectly from (7.2): On the left-hand side is the gstretching of the middle
line of the arch; therefore, to a factor 1/EF h is equal to ths hori—
zontel force H, and (7.2) expresses the. equilibrium condition thet H
does not vary with =x. ' : .

Just as in the case of the Euler strut the constant of integration
h = HEF of the first equation enters Into the second as the coefficient
of the unknown w; that is, the system (7.2) and (7.3) is nonlinear,
(See equation {3.4) or (3.2)).. Nevertheless, Just as before the exact
solution can be gilven in this simple case without difficulty in terms of
the at first unknown

> .1>n H EJn®
@ T CEY = 2
ni B* 1
. nx
for example, for W = fj sin.—i-:
anx
o X ar’® sin -5— . o o
w=7F gin -— + - (7.5)

T 042 -1 1 2rn?aPEJd cos%’E

(x <1/2)

and from (7.2) by another integration taking into account the bound.ary
conditions u(0) = u(l) = O there is obtained subsequently a tranecen—
dental equation for the dependence of o upon Q and f, of the form:

1

[eart)e o

o

o~ {

R:
EF
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The d.etermination of the critical lo&d can be ocarried - out In two

'basically different wa,ys .

, The first. method (eee C.-B. Biezeno,reference 1, pp. 21 £f) proceeds
from the condition JQ/3f = O, wherein the velation between Q and f

1s established by equa'biona (7 6) and (7.5) for X = 1/2

. 0&2 Qla "o n'o'r. o
w(z/e) af=7* + - (tan - (7.5%)
° a.g -1 2n2a2EJ ‘

2 2

A secoml method proceeds by way of the ensrgy criterion (4.3),
For B57IT 4s obtained from equa.tion (7 l) a.f'ber writing for- 'brevityl

K“x"' 2 "x) ( o ) ]= -1 ng - (ﬁxrﬂ--@; ];.e'-'-w ‘;.’“’.." (7.7)

the expression ,

e [ oo o

e , . (7 8)
The particuler displacement system 6u, 5w by which 53T 1s Just made
equal to.zere 1s obtained from

8(5%TI) = 0

that 1s, from the two homogeneous differential equations

9 T,
X ~8ux.x + -S; L(wx - Wx> wa] = 0

and 4 4 . (7.9)

Bl [ st 0

Therein w ig at first according to (7,5) a function of the twe
pa:rameters a and Q. Q for example, is consid,ered as eliminated with

-the help of equations (7.6) and (7.5%).
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with the hemegeneous boundery Qonditionsrf
8u(0) = 8u(l) = 5w(0) = Bw(1) = By (0) = By (1) = ©

The desired'critical a-valve is the lowest eigenvélué of th;.equations
(7-9)~ ) . .

- APPROXTMATE DETERMINATION OF THE SNAF LOAD

- Becauée of the great mathematical -difficulties’that equations (7.9)

.- -present, the ‘second method outlined is not suitable for an exact trest-

ment of the problem but is well suited — and therefore that procedure
will be considered here — to an approximate treatment by the methed of
. Ritz or Galerkin. S '

This procedure can be started at either of two points: either,
meke & Ritz approximation for 8w in (7.9), determine the correspond—
ing Su from the first of equatione (7.9), and following Galerkin from
the condition &(8°TI) = O ocbtain = (transcendental) equation for the
determination of ‘a; or ~ very muchk more simply,; if° also necessarily
- with- &’ corresponding loss in accuraéy — introduce: at the start
? Ri?z approximation for w iteelf in place of (7.5) into the expression
T.1).

It i5 well to use the second method but only indicate (reference 8)
the course af the calculation. If again

nx
W= fo sin—i*

is chosen and as a Ritz sxpression

' nx . 2
w=1 Sin'7'4‘f2 sin —75 (8,1)

" ‘then all boundary conditions are fulfilled, except for the one dis—

continuity requirement (7.4), the violation of which is, hewever, un—
important. Further,by satisfying exactly equation (7.25 (obtained by
variation with respect to n) and calculating the horizontal force

H from (7.6), the integral in (7.1) cen be evaluated snd IT is
Obtained as a function of the amplitudes fo, f1, £2 or the dimension—
less parametoers : : v
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. 1 f2
Ao =-2, N = EL, Az = ~2 (1 = radius of gyration)

7 ih.the:simp;e form

hi4 IT 2 ‘i N 2\ o
= — N 67\2 —-( S T )* S 8.2)
fx 1% 53 2 f % 2 o+ 2 A 3 Ay aam

| —rETTS .q—w__,wﬁws
W DT TRE T ¥

Wheré ‘\‘ A
W o o wm g

ﬁefo B*

=

1
- L B L B (8.2%)
TR P n°fo BIx"

The equilibrium equations read

3TI ‘ A2 s ‘
SV Ay + (Ao 7‘1)<7‘o7‘1 - ~;— —~ g > - ghg =0
A . ’ (803)
A2 : :
== = 39N, — U, (7\07\1 - - 22N = 0

/

Thqj are in the two unknowns A; and A and of the third degree;
nevertheless a complete discussion ie possible without numerical calcu—
latlon, because the second equation may be written as a product

M2 \
'7\2<7\0k1 - "—2-"‘ - 2)\22 - 8/] = 0
Therefore the cases can be distinguished

?\2 = O ’
A2 (8.4)
27\1 + (7\0 - .Al) 7\07\1 - “’2"" = q}\o
and Az # 0, that is, . ,
- M2 = Aoha ~M2 -8

(8.5)
8?\0 fand 67\1 = q-)\o
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the discuseion of which no longer requires any 1abor.”  The- first system
provides a symmetrical de’ormation, the second a superposition of a sym—
metrical and an antisymmetrical deformation. The corresponding horizontal
compressive forces becoms - ‘ N

MM — N 2/2
HI = H¥* 5

(8.4

Aohy — Mi2f2 — A2

= hg* 8,51
: L (8.5')

Hyp = B*

The critical load Qepit is found from the condition

%11 3°IT
2 2
5°TL = ——= (BN\)° + 2 (8Ay 8M5) + )220 (8.6
Y *,_,..ala\ PRI N2 (5% (8.6)
| 3°fx
As long as Sz .and the discriminant
1%

X T /3 n\f'
YE 57\2 Kaxlaxa

are greater than zero, 8211 as a positive—deflnite quadratic form in
8h; end BA, cannot be zero for any combination of thése two variables
Vanishing of the discriminent characterizes the pair of values A, e
for vhich there is exactly one combination 5%1, 8A2 for which 82fT
becomes zero but none for which it is less than zero. The condition

3T 32fx 7 I N L
=) > = 0 (8-7)
axl Ms Ny Nz

gives, therefore, the stability limit and together with the two equations
(8.3) determines the three unknowns A, Nz, and qg.q4. In this case
(8.7) reads - ferage TR RSO
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h[ 8-'4-(‘7\,07\1 - -27~a?>'+~1'9<2.2”2 + (Ao ~M)% = ("‘0"1 “ 2/
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ARy

* 27\22} ~ 160220 = M) = O

":whi§h‘6bnﬁiti¢njﬁec6mas

T A2=0.

with

o

LY 2 A
slo- (on =) [ev oo -(an -] -

and with

2}\22 = 7\07\1- - '—2""" - 8

- ua(mo'xl ~ N2/ - 8.> -0

There are’ therefore two sets of values for A1, A2, and’ Qrit

€

o R : : | L Ao uaa

; 1 . 1 o~ - ll» 8/2
Mo =0, Az = Ao -J—-T~—-.A/7\02 T h, qupgy = 2 + i:( . ) . (8.8)
7\2 = 0, 7\1 = 7\() - W 7\02 - 16, Qerit = 2 "'ng ‘\/')‘02 - 16 (8.9)

by which a critical state of the elastic system is characterized.

The physical significance of the relations (8.8), (8.9) and espe—

: cially*the-(in this case unstable) behavior above the critical load will

not be pursued in detail (see reference 8). (See fig. 6.) There the
load Q 1is plotted against the deflection f; of the point of epplication,
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with the initial emplitude f, as e paramster. For /fo/l =A =2 q-
increases monotenically with Ty instdbility ie not possible. In the
reglon

2< N S /27 (8.817)

under the critical load given by (8.8) there enters definite instability;:
increasing deflection f; without increase of load, Accerdingly the
beam snape — under constant load — until 1t finds a steble cenfigura—
tion® at Ap'. Since A' > A, the beam 1is now convex downward; it also
can be seen clearly that the system now must be stable with respect to

an increase in load; a further deflection results in a lengitudinal

pull. (See equation (8.47).)

For ,
N =22 . (8.9%)

the critical load is given by (8.9). Before the external load can

assume the value (8.8), the longitudingl compression according to (8,5')
reaches the value UH*, that is, the second Euler leoad, under which the
strut agssumes the Snshape configuration Ao # 0. It sneps again into

a steble position A;', this time, however, passing threugh an wn—
symmetrical deformation. At the critical load there appears a branch—
ing of the elastic equilibrium; figure 6 shows the. two .branches of the

Q -~ f1 curve, both of which however - snd this is the notewerthy differ—
ence from the Euler problem — are uneteble.

For further detalils see’ the publication referred to, Here it was
Just a question of presenting the chain of ideas that led to the deter—
mination of the critical loads (8.8) and (8.9), in order to show the
application of the gemeral stability criter;on (4,3) to a stebility
problem of an. entirely different kind, -

‘That is;at first vibrates about %1" as & stable squilibrium
position. :




e e

_—
‘ )

NACA B No. 1138

37

3y

Handbuch der Ph&sik Bd. 6 (Eeriin); p. 70 ff, 1928, -

Trefftz, E.: Zur Theorie der Stabilitdt. .Z.f,a.M.M.. Bd, 13, 1933,
p' 160- . e s A Ll e e .

Pﬁschl, Z. B. Th.: {Uber dile. Mintmalprinzipe der Elastizitatstheorie.
Bau — Ing. Bd. 17, 1936, p. 160..

Marguerre, Ka:rl The Apparent Width of the Pla.te 1n Compression.
NACA ™ No, 833, 1937. . ;

,M'a.rguerre', Kerl: Uber die Behandlung von' Stabilitatsproblemen mit:

 Hilfe der energetischen -Methode. Z.f.a.M.M, Bd. 38, 1938,
.pp. T0 Tf,

Reissner, H.: 2.f.a.M.M. Bd. 5, 1925, p. W75,

Biezeno, C. B.: Das Durchschlagen eines schwach gekrummten Stabes,
Z.f.a,M.M, Bd. 18, 1938, p. 21,

Brazier, L. G.: The Flexure of Thin Cylindrical Shells and Other
"Thin" Sections. R, & M. No, 1081, British A.R.C., 1927.

Heck, O. S.: The Stability of Orthotropic Elliptic Cylinders in Pure
Bending. NACA ™ No. 834, 1937.

Weinel, E.: Uber Biegung und Stabilitét eines doppelt gekrwmten
Plattenstreifeus. Z.f.a,M,M. Bd. 17, Dec. 1937, pp. 366~369. .

Marguerre, Karl: Die Durchschlagskraft eines schwach gekrimmten
Belkens. Sitzungsherichte der Berliner Mathematischen Gesellschaft.
Bd. 37, June 1938, pp. 22-40




38 " NAGA TM No. 1138

TRANSLATCR'S NOTES

R 2
D O N o

Equation 3.7, last part

‘Trans. notet - It sppears that this equation should be .

v S enx ~ f2n2’
U= —€*¥ —=<gin — -~ X
* 8 1 42
Equetions (7.5) and (7.5%) s
3
Trans. note: It appears that the term"f—gww-— should be -§13~— .
_ A BnCa”EJ 2n o BJ
Equation (8.8) _
o . . ‘ ' 1 /ho?‘ - .\3/2 ; .
. Trans. note: It appears that 2 "’";\"‘" ‘\ ’3 ~ghould be
N o L . v .

2+§}§§,\/}§02-h
- o,

Page 24 .

N EJ
Trens. note: It appears that Ay = Y uf ®dx should be

2 f

Trans. note: It appears that (8.4%) should be (8.5t).
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Figure l.- Strut under compression.

e/e* & q,

igure 2.- Amplitude f against ¢.

Figure 3.~ Load P against ¢.
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3

y = Aife¥®

[V

Figure 4.- Variation of energy of deformation
with the amplitude f = 2if. Edge
compression e = ae* as a parameter.

Moment of inertia J, Section F
Radius of gyration i, Elasticity modulus E

Figure 5.~ Slightly curved besam under
transverse load Q.
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